Dr. Brenda Dolan
Dr. Brenda Dolan’s interests include radar analysis and algorithms, observational integration and validation of cloud-resolving models, precipitation processes, and cloud physics. She is an expert in polarimetric radar, having developed one of the first hydrometeor identification algorithms for short-wavelength radars (X- and C-band). Additionally, she has worked with a wide variety of radars around the world including ground, ship, and satellite-based radars from Ka- to S-band. Brenda has participated in over 10 field projects as a radar scientist or mission scientist. She has worked with large datasets including from radar and disdrometer. Finally she works at the interface of cloud resolving models and observations, using them synergistically to improve observational retrievals and better model representation of physical processes. Recently she has collaborated to develop a polarimetric radar forward operator which can be used with cloud resolving models such as WRF and RAMS.
ABSTRACT: Precipitation-focused Field Campaign Data from Precipitation Radars and Disdrometers
Field observations of precipitation processes and surface rainfall can fill critical gaps in our understanding of the global water cycle and climate. Assets such as mobile radars, disdrometers, and particle probes can be placed in challenging or data sparse locations such as over the oceans or in complex topography to provide high resolution and detailed observations to better our understanding of precipitation processes and variability, as well as constrain model parameterizations. However, such data is often unique and presents its own challenges for usage, including scanning strategies, data formats, quality control, coverage, and continuity. This talk will focus on radar and disdrometer data collected in recent field campaigns over the oceans and in complex terrain, including a broad overview of available datasets. Specifically, this talk will overview the applications, challenges and advantages of data collected by precipitation radars and disdrometers during field experiments which can be leveraged for precipitation research.